Analysis and Design of Reinforced Concrete Building using Different Software Programs

Authors:

Eng. Zubeida Tajelsir Abdallah Elsheikh and Dr. Majdi Elgaili Mukhtar Ahmed Department of civil engineering, alzaiem alazhari university kafori Block 7, khartoum north, Sudan

1.ABSTRACT:

The research dealt with how to analyze a multi-story building consisting of a ground floor and 5 floors using manual analysis and programs. Etabs and Excel programs were used to compare with the manual design. The manual method used for the analysis is the moments distribution with excel program. A structural analysis of wind loads for a building consisting of 6 floors was carried out using manual and computer methods. The results were compared and it was found that the results are close. The slabs, columns, beams, and foundations were analyzed manually, and the structural design of the structural elements was made and compared with the program design, and it was found that the results are close.

Key word:

Analysis, Design, moment distribution (Excel program) and portal frame.

Objective:

To analysis and design a multi-story RC building.

Manual analysis is done with the aid of Excel software.

Analysis and design is done with the aid of Etabs & SAFE software.

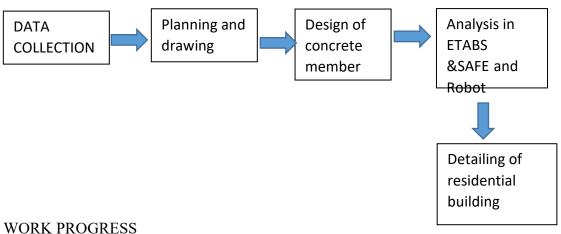
And compare the design with Robot software.

The design is done with the aid of revit software.

To gain design knowledge on various structural elements like beam, column, slab, and foundationetc.

INTRODUCTION:

Now a days due to overpopulation and high cost of land, multi-storied building is more essential for metropolitan city. Multi-storied Residential building is the perfect solution for living of high populated area. A multi-storied building, which possess multiple floor above the ground level, which aim to increase the floor area of building in shortest built up area.


Structure analysis is a subject which involves designing, planning to build up a perfect building. Basically each project are different with their design criteria such as incoming load, soil properties, dynamic load, built up area etc. Here we provided the details to complete a residential apartment theoretically.

We firstly collected some required data to measure the soil specific such as moisture content, bearing capacity of soil, types of soil etc. We provided the perfect parameter in beam, slab, column and footing with the consideration of incoming load to avoid shear and bending collapse. In

Accordance with limit state method of collapse in BS 0.0035

We built G+5 building which deal with strength and stability of structure under maximum design load Flexure, compression, shear and torsion.

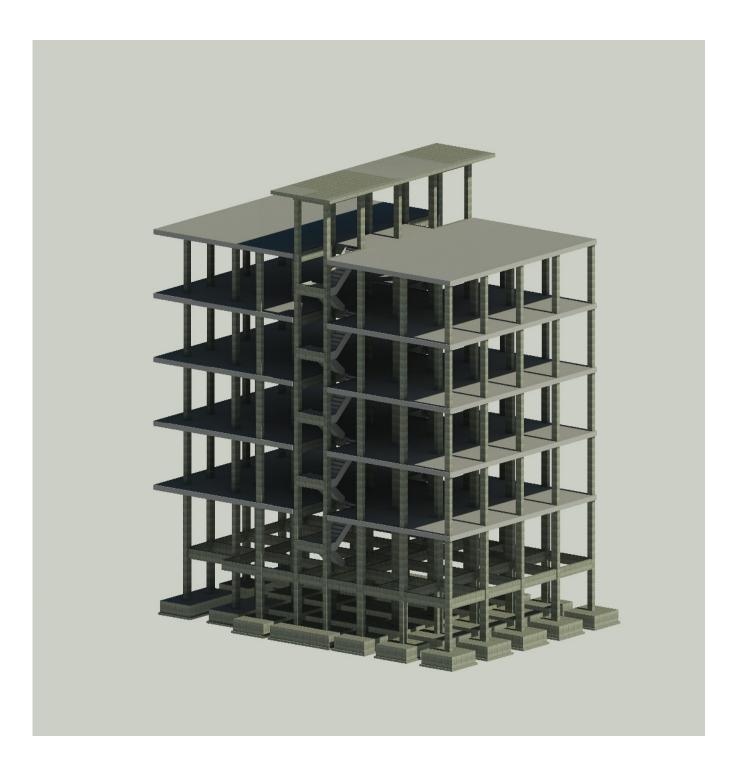
1. METHODOLOGY:

WORKTROOKES

BASIC DATA

i. Type of building – Residential building.

- ii. Type of structure –multi story rigid jointed framed iii. No. of story 6 (G+5)
- iv. Floor to floor height -3 m.
- v. External walls -250 mm including plaster


vi. Internal walls - 150 mm including plaster.

vii. Bearing capacity of soil - 200 KN/m2

viii. Height of plinth -0.5 m.

NOTE:-Others required data assume using NBC(national building code) for planning and (BS8110) & (ACI 318-

14) for concrete design work.

IJERTV13IS010087

Table 2-5

Table 2-1

Name	Height mm	Elevation mm	Master Story	Similar To	Splice Story
Story7	3000	20400	No	None	No
Story6	3000	17400	Yes	None	No
Story5	3000	14400	No	Story6	No
Story4	3000	11400	No	Story6	No
Story3	3000	8400	No	Story6	No
Story2	3000	5400	No	Story6	No
Story1	2400	2400	No	Story6	No
Base	0	0	No	None	No

Table 2-2

Name	Туре	Self Weight Multiplier	Auto Load
Live	Live	0	
dead	Dead	1	
wl	Wind	0	BS 6399-95

Unique Load Load Story Label Direction Name Pattern kN/m² F23 50 Story7 Live Gravity 1.5 Story6 F7 4 Live Gravity 1.5 Story5 F7 5 Live Gravity 1.5 Story4 F7 6 Live Gravity 1.5 Story3 F7 7 Live Gravity 1.5 Story2 F7 3 Live Gravity 1.5 Story1 F4 2 Live Gravity 1.5 Story7 F23 50 dead Gravity 1 Story6 F7 4 dead Gravity 8.4 F7 Story5 5 dead Gravity 8.4 Story4 F7 6 dead Gravity 8.4 Story3 **F7** 7 dead Gravity 8.4 Story2 F7 3 dead Gravity 8.4 F4 Story1 2 dead Gravity 8.4

Table 2-6

Name	Туре
Live	Linear Static
dead	Linear Static
wl	Linear Static

Table 2-3

Name	Туре	E MPa	v	Unit Weight kN/m ³	Design Strengths
A416Gr270	Tendon	196500.6	0	76.9729	Fy=1689.91 MPa, Fu=1861.58 MPa
A615Gr60	Rebar	199947.98	0.3	76.9729	Fy=413.69 MPa, Fu=620.53 MPa
fcu25	Concrete	24855.58	0.2	24	Fc=25 MPa
fcu30	Concrete	24855.58	0.2	24	Fc=30 MPa
fy 460	Rebar	199947.98	0	76.9729	Fy=460 MPa, Fu=575 MPa
fy250	Rebar	199947.98	0	76.9729	Fy=250 MPa, Fu=312.5 MPa

Table 2-4

Name	Design Type	Element Type	Material	Total Thickness mm
SLAB 18	Slab	Shell-Thin	Fcu25	180
Slab 20C,	Slab	Shell-Thin	Fcu25	200

Table 2-7

Name	Load Case/Combo	Scale Factor	Туре	Auto
uls	Live	1.6	Linear Add	No
uls	dead	1.4		No
sls	Live	1	Linear Add	No
sis	dead	1		No
DL&LL&WL	Live	1.2	Linear Add	No
DL&LL&WL	dead	1.2		No
DL&LL&WL	wl	1.2		No

BS 6399-95 Auto Wind Load Calculation

This calculation presents the automatically generated lateral wind loads for load pattern wl according to BS 6399-95, as calculated by ETABS.

Exposure Parameters		
Exposure From = Diaphragms		
Wind Direction = 0;90 degrees		
Effective Speed, V e		$V_e = 88 \frac{meter}{sec}$
Windward Coefficient, C p,wind		$C_{p,wind} = 0.85$
Leeward Coefficient, C _{p,lee}		$C_{p,lee} = 0.5$
Top Story = Story7		
Bottom Story = Story1		
Include Parapet = No		
Factors and Coefficients		
Size Effect Factor, C _a [BS 2.1.3.4]		C _a = 0.89
Dynamic Augmentation Factor, C _r [BS 1.6.1]		C, = 0.25
Lateral Loading		
Dynamic Pressure, q [BS Table 2]	$q_s = 0.613 V_e^2$	$q_s = 4747.072$
Wind Pressure, p [BS Eq. 2.3.1.6(7)]	$p = 0.85 q_s C_a (C_{p,wind} + C_{p,lee}) (1 + C_{p,lee})$	C,)

Published by : http://www.ijert.org

3. OUT PUT ANALYSIS:

B.S CODE:

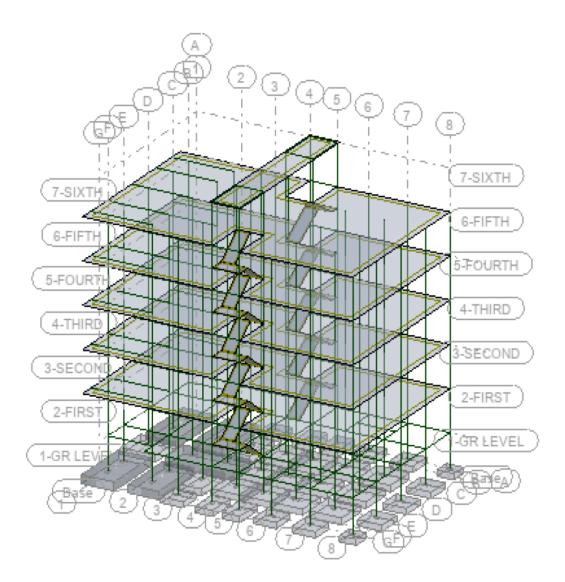


Figure 3-1 Robot modeling

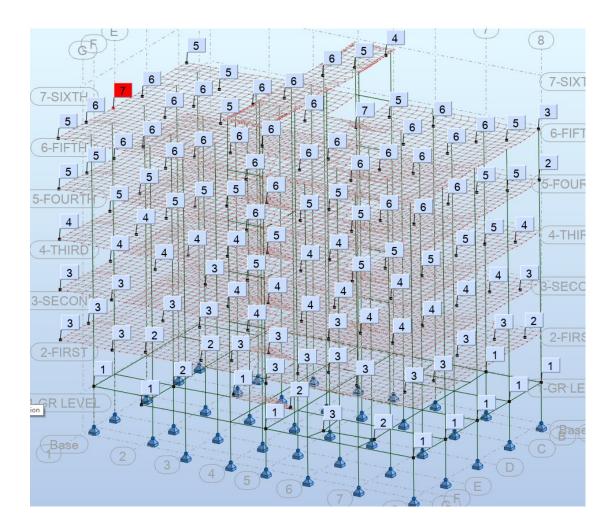


Figure 3-2: Deform shape

COLUMN RESULT

Fcu=30N/mm2

Table 3-1: Loads & moment

	ETABS	ETABS			ROBOT		
	F	Му	Mz	F	Му	Mz	
Short col&Gr	2176	-6.4	0.13	2104	.79	7.16	
1 st & 2 nd	1623	2.6	0.45	1564	-1.2	6.16	
3 rd & 4 th & 5 th	805	1.45	-0.24	774	-4.56	3.3	
Short col&Gr	1283	0.8	-3.6	1000	9.1	-3.9	
1 st & 2 nd	913	-2.2	36.3	836	23	-0.43	
3 rd & 4 th & 5 th	683	17	-30	496	20.3	0.25	
Short col&Gr	714	-4.3	-3.2	451	-2.7	1.4	
1 st & 2 nd	509	10.8	18.3	364	9.4	9.98	
3 rd & 4 th &5 th	252	8.1	16.3	213	-8.6	-7.5	
	1 st & 2 nd 3 rd & 4 th & 5 th Short col&Gr 1 st & 2 nd 3 rd & 4 th & 5 th Short col&Gr 1 st & 2 nd 1 st & 2 nd	F Short col&Gr 2176 1 st & 2 nd 1623 3 rd & 4 th & 5 th 805 Short col&Gr 1283 1 st & 2 nd 913 3 rd & 4 th & 5 th 683 Short col&Gr 714 1 st & 2 nd 509	F My Short col&Gr 2176 -6.4 1st & 2nd 1623 2.6 3rd & 4th & 5th 805 1.45 Short col&Gr 1283 0.8 1st & 2nd 913 -2.2 3rd & 4th & 5th 683 17 Short col&Gr 714 -4.3 1st & 2nd 509 10.8	F My Mz Short col&Gr 2176 -6.4 0.13 1 st & 2 nd 1623 2.6 0.45 3 rd & 4 th & 5 th 805 1.45 -0.24 Short col&Gr 1283 0.8 -3.6 1 st & 2 nd 913 -2.2 36.3 3 rd & 4 th & 5 th 683 17 -30 Short col&Gr 714 -4.3 -3.2 1 st & 2 nd 509 10.8 18.3	F My Mz F Short col&Gr 2176 -6.4 0.13 2104 $1^{st} \& 2^{nd}$ 1623 2.6 0.45 1564 $3^{rd} \& 4^{th} \& 5^{th}$ 805 1.45 -0.24 774 Short col&Gr 1283 0.8 -3.6 1000 $1^{st} \& 2^{nd}$ 913 -2.2 36.3 836 $3^{rd} \& 4^{th} \& 5^{th}$ 683 17 -30 496 Short col&Gr 714 -4.3 -3.2 451 $1^{st} \& 2^{nd}$ 509 10.8 18.3 364	F My Mz F My Short col&Gr 2176 -6.4 0.13 2104 .79 $1^{st} \& 2^{nd}$ 1623 2.6 0.45 1564 -1.2 $3^{rd} \& 4^{th} \& 5^{th}$ 805 1.45 -0.24 774 -4.56 Short col&Gr 1283 0.8 -3.6 1000 9.1 $1^{st} \& 2^{nd}$ 913 -2.2 36.3 836 23 $3^{rd} \& 4^{th} \& 5^{th}$ 683 17 -30 496 20.3 $3^{rd} \& 4^{th} \& 2^{nd}$ 509 10.8 18.3 364 9.4	

Table 3-2: COLUMN DESIGN

MEMBER		ETABS	ROBOT	MANUAL
C1	Short col&Gr (30*60)cm	6T16mm As=1206mm^2 Φ _l 6mm 120mmc/c	6T16mm As=1206mm^2 Φ _l 6mm 120mmc/c	6T16mm As=1206mm^2 Φ _l 6mm 150mmc/c
	1 st & 2 nd (30*55)cm	6T16mm As=1206mm^2 Φ ₁ 6mm 120mmc	6T16mm As=1206mm^2 Φ _l 6mm 120mmc	4T16mm As=804mm^2 Φ _l 6mm 150mmc/c
	3 rd & 4 th &5 th (45*25)cm	4T16mm As=804mm^2 Φ ₁ 6mm 120mmc	4T16mm As=804mm ² Φ ₁ 6mm 120mmc	4T16mm As=804mm^2 Φ _l 6mm 150mmc/c
C2	Short col&Gr (30*50)cm	$6T16mm As=1206mm^2 \Phi_l 6mm 120mmc/c$	$\begin{array}{c} 6T16mm \text{ As}=1206mm^{2}\\ \Phi_{l}6mm 120mmc/c \end{array}$	6T16mm As=1206mm^2 Φ _l 6mm 150mmc/c
	1 st & 2 nd (30*45)cm	4T16mm As=804mm^2 Φ _l 6mm 120mmc	4T16mm As=804mm ² Φ _l 6mm 120mmc	4T16mm As=804mm^2 Φ _l 6mm 150mmc/c
	3 rd & 4 th &5 th (40*25)cm	4T16mm As=804mm^2 Φ _l 6mm 120mmc	4T16mm As=804mm ² Φ _l 6mm 120mmc	4T16mm As=804mm^2 Φ _l 6mm 150mmc/c
C3	Short col&Gr 1 st & 2 nd (40*25)cm	4T16mm As=804mm^2 Φ _l 6mm 100mmc	4T16mm As=804mm^2 Φ _l 6mm 100mmc	4T16mm As=804mm^2 Φ _l 6mm 150mmc/c
	3 rd & 4 th (40*20)cm	4T16mm As=804mm^2 Φ _l 6mm 100mmc	4T16mm As=804mm ² Φ _l 6mm 100mmc	4T16mm As=804mm ² Φ _l 6mm 150mmc/c

Table 3-3: Beam Design

D.L=13.4KN/m

fcu=25N/mm2

section	ETABS			ROBOT			MANUAL		
B(20*40)	Load	My	Fz	Load	Му	Fz	Load	Му	Fz
cm	13.4 KN/m	50 KN.m	73KN	13.4 KN/ m	31.9 KN.m	+37 -37 KN	13.4 KN/m		
B(20*50) cm	Load	Му	Fz	Load	Му	Fz	Load	Му	Fz
	13.4 KN/m	+18.4 -28.3 KN.m	-45.1	13.4 KN/ m	-27.4 +16.5 KN.m	+51 -45.3 KN	13.4 KN/m	12.3 KN.M	32.3 KN

Table 3-4: Beam design at X direction:

At mid span

section	ETABS		ROBO	ROBOT		MANUAL	
	mom	design	mom	design	mom	design	
B2(20*40)cm	0	Assembly	31.9	2T16		2T16 As=402mm2	
		rein 2T16		As=402mm2		R6@160mm c/c	
		As=402mm2		R6@160mm c/c			
		R6@160mm					
		c/c					
B1(20*50)cm	+18.4	2T16	+18.6	2T16	12.3	2T16 As=402mm2	
		As=402mm2		As=402mm2		R6@160mm c/c	
		R6@160mm		R6@160mm c/c		<u> </u>	
		c/c		-			

At interior support

section	ETABS		ROBO	ROBOT		MANUAL	
	mom	design	mom	design	mom	design	
B2(20*40)cm	-56.6	2T16	3.3	2T16		2T16 As=402mm2	
		As=402mm2		As=402mm2		R6@160mm c/c	
		R6@160mm		R6@160mm c/c		_	
		c/c		_			
B1(20*50)cm	-26	2T16	-24.9	2T16	-10.6	2T16 As=402mm2	
. ,		As=402mm2		As=402mm2		R6@160mm c/c	
		R6@160mm		R6@160mm c/c		0	
		c/c		_			

Maximum shear (concrete and stirrups):

section	ETAB	S	ROBOT		MANUAL		
	shear	design	shear	design	shear	design	
B2(20*40)cm	+72	R6@160mm c/c	-34.9	R6@160mm c/c			
B1(20*50)cm	+43.3	R6@160mm c/c	-44	R6@160mm c/c	34.8		

Table 3-5: Beam design at Y direction:

At mid span positive:

section	ETABS		ROBOT		
	mom	design	mom	design	
B1(20*50)cm	+35	2 Φ16 As=402mm2	+45	2 Φ16 As=402mm2	

At interior support negative

section	ETABS		ROBOT		
	mom	design	mom	design	
B1(20*50)cm	-42	-42 2 Φ16		2 Φ 16	
		As=402mm2		As=402mm2	

At support:

section	ETABS		ROBOT	
	mom	design	mom	design
B1(20*50)cm	-42.4	2 Φ16 As=402mm2	-31.8	2 Φ16 As=402mm2

Maximum shear (concrete and stirrups):

section	ETABS		ROBOT		
	mom	design	mom	design	
B1(20*50)cm	+74.8	Φ6@160mm c/c	-68	Φ 6@160mm c/c	

SLAB DESIGN:

member	ETABS &	z SAFE	ROBOT		MANUA	Ĺ
	Moment	design	Moment	design	Moment	design
Roof slab(Y)	7	T10@300mmc /c	7	T10mm@300 mmc/c	13.6	3T12mm@300mmc /c
Floor slab(X)	28	T12mm@200 mmc/c	33	T12mm@200 mmc/c	72.4	4T12mm@200mmc /c
Floor slab(Y)	33	T12mm@200 mmc/c	28.2	T12mm@200 mmc/c	86.4	3T12mm@300mmc /c

Table 3-6: Positive moment bottom:

Table 3-7: Negative moment top

member	SAFE		ROBOT		MANUAL	
	Moment	design	Moment	design	Moment	design
Roof slab(Y)	16	T10@300mmc/c	12.7	Middle strip T10@300mmc/c Col strip T10@200mmc/c	13.6	Middle strip T16@500mmc/c Col strip T16@500mmc/c
Floor slab(X)	80	Middle strip T16@300mmc/c Col strip T16@100mmc/c	72.7	Middle strip T16@300mmc/c Col strip T16@100mmc/c	106.7	Col strip 5T16mm@200mmc/c Middle strip 2T16@500mmc/c
Floor slab(Y)	116	Middle strip T16@300mmc/c Col strip T16@100mmc/c	77.2	Middle strip T16@300mmc/c Col strip T16@100mmc/c	98.7	Col strip 5T16mm@200mmc/c Middle strip 2T16@500mmc/c

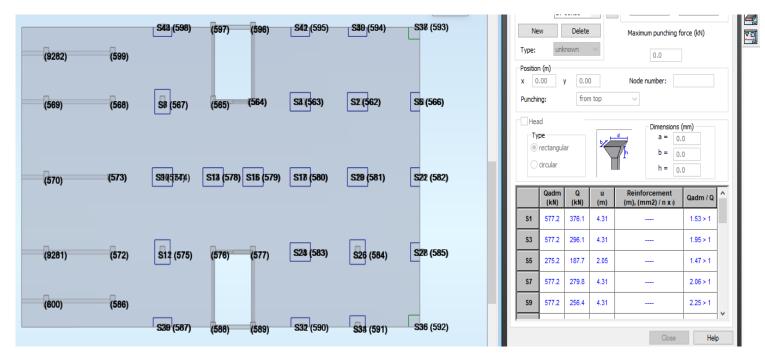
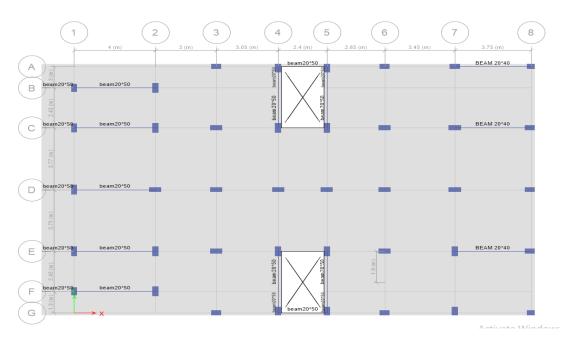



Figure 3-3 Check of punching shear: Robot

ETABS:

IJERTV13IS010087

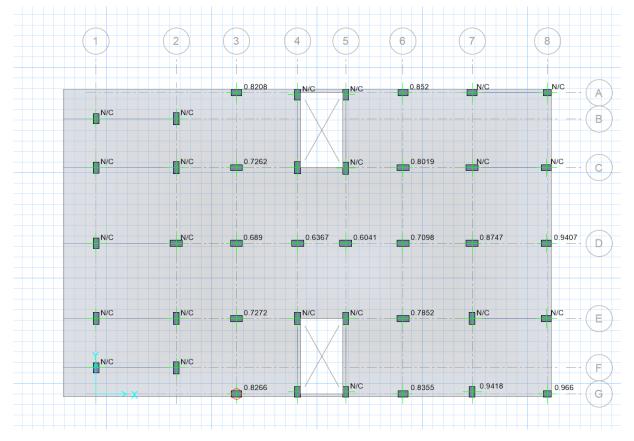


Figure 3-4: chech of punching shear

• I added on ETABS modeling three beams to the slab to check the punching shear

Stair Design:

L.L=3KN/m2 D.L=3.7KN/m2

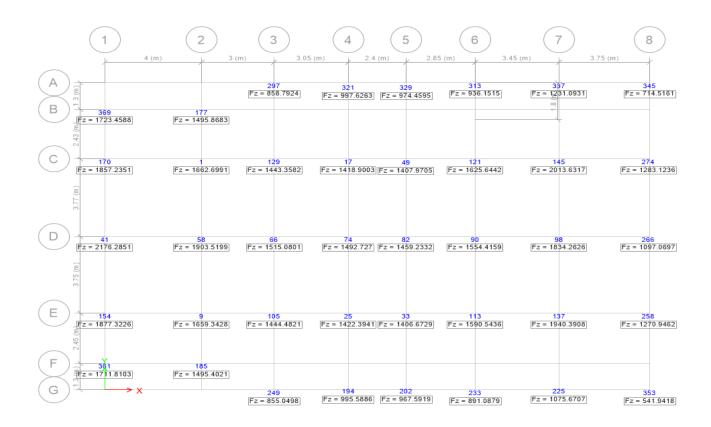
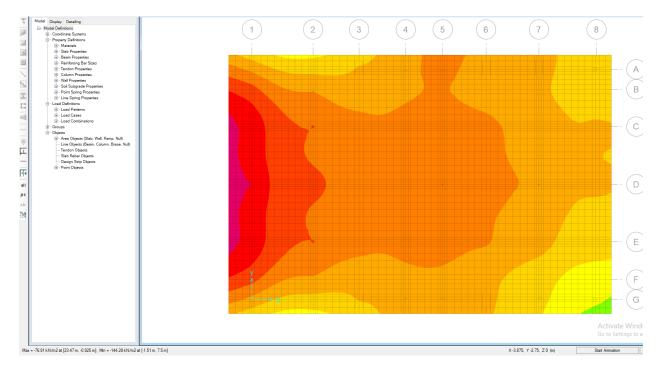
Table 3-8: Design of stair

ETABS& SAFE RO		ROBC	ROBOT			MANUAL		
Mx	bottom	Top At support	Mx	bottom	Тор	Mx	X direction	Y direc
-21	4T10@25 0mmc/c	4T12@250 mmc/c	-15.2	4T10@250 mmc/c	4T10@ 250mm c/c	-10.4	4T10@250 mmc/c	4T10@250 mmc/c

K=120*q

Foundation design: p=200KN/m2 fc'=25N/mm2 Design of footings: p=200KN/m2 fc'=25N/mm2 Fy=460N/mm2 T16mm Q= γh =20*1.4=28KN/m2 K=120*(200-28)=20640KN/m2 K=20.60MPa K=20.60MPa

Thickness=680mm

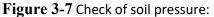

Figure 3-5: Ultimate load in footings

Figure 3-6 check of punching shear

Robot:

Fy=460N/mm2	T16mm	p=200KN/m2	fc'=25N/mm2	K=120*q	
Q=\gamma h =20*1.4=2	8KN/m2				
K=120*(200-28)=2	0640KN/m2				

K=20.60MPa

Thickness=600mm

	2	3	4	5	6	7	8
		FZ=759.7	FZ=975.6	FZ=951.7	FZ=866.7	FZ=955.3	FZ=443.3
FZ=1574.6	FZ=1464.4						
					· · · · · · · · · · · · · · · · · · ·		
FZ=1791.3	FZ=1635.2	FZ=1528.3	FZ=1847.3	3 FZ=1728.5	FZ=1668.5	FZ=1863.5	FZ=999.7
		The second					
FZ=2104.1	FZ=1918.2	F7=1532.2	F7=1523 (F7≓1481 2	FZ=1557.0	E7=1820 5	FZ=957.9
	-12 1010.2 E	12 1002.2	12 1020.2	12 1401.2	12 1007.0	12 1020.0	12 001.0
				and the second			
FZ=1807.9	FZ=1653.9	FZ=1498.9	FZ=1808.8	FZ=1799.3	FZ=1670.3	FZ=1866.4	FZ=999.0
		φ 	μ			Ψ	
FZ=1586.2	FZ=1477.1						
		·					
(_1_)(2)	FZ=773.5	FZ=984.3	FZ=928.2	FZ=865.2	FZ=967.0	FZ=449.0

Figure 3-8: Ultimate load in footings

FOUNDATION DESIGN:

Table 3-9: Positive moment top:

member	ETABS & SAI	FE	ROBOT		
	Moment	design	Moment	design	
Floor slab(X)	353	T16mm@200mmc/c	250	T16mm@170mm c/c	
Floor slab(Y)	420	T16mm@300mmc/c	19.7	T16mm@240mm c/c	

Table 3-10: Negative moment bottom:

member	SAFE	SAFE		
	Moment	design	Moment	design
Floor slab(X)	-165	Middle strip T16@200mmc/c Col strip T16@90mmc/c	-602.6	Middle strip T16@120mmc/c Col strip T16@90mmc/c
Floor slab(Y)	-114.8	Middle strip T16@200mmc/c Col strip T16@90mmc/c	-576	Middle strip T16@120mmc/c Col strip T16@90mmc/c

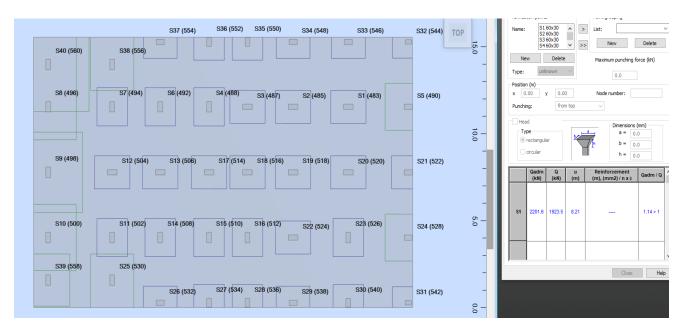


Figure 3-9 check of punching shear



Figure 3-10 Check of soil pressure:

ACI CODE:

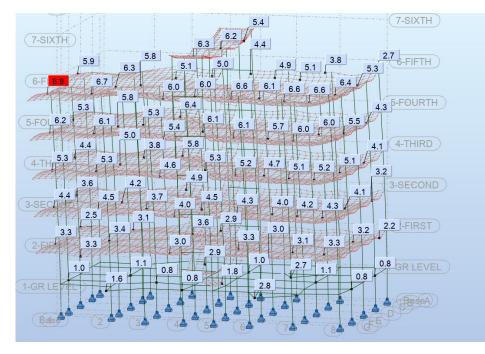


Figure 3-11: Deform shape in Robot

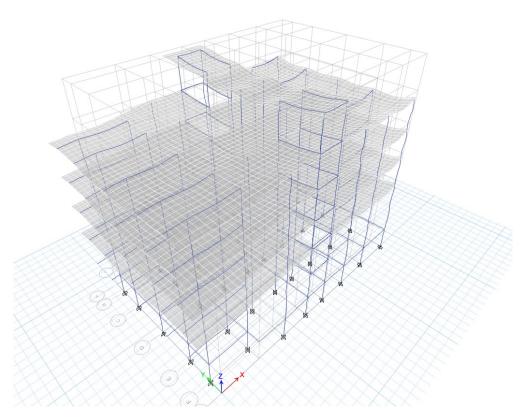


Figure 3-12 Deform shape in ETABS

<u>:</u>

Table 3-11: Column design:

member		ETABS	ROBOT
C1	Short col&Gr (30*60)cm	6T16mm As=1206mm ² Φ ₁ 6mm 120mmc/c	6T16mm As=1206mm ² Φ ₁ 6mm 120mmc/c
	$1^{\text{st}} \& 2^{\text{nd}}$ (30*55)cm	6T16mm As=1206mm ² Φ ₁ 6mm 120mmc	6T16mm As=1206mm ² Φ_16mm 120mmc
	3 rd & 4 th & 5 th (45*25)cm	$\begin{array}{c} 4T16mm\\ As=804mm^{2}\\ \Phi_{l}6mm\ 120mmc \end{array}$	$\begin{array}{c} 4T16mm\\ As=804mm^{2}\\ \Phi_{l}6mm\ 120mmc \end{array}$
C2	Short col&Gr (30*50)cm	6T16mm As=1206mm ² Φ _l 6mm 120mmc/c	6T16mm As=1206mm ² Φ _l 6mm 120mmc/c
	$ \begin{array}{c} 1^{\text{st}} \& 2^{\text{nd}} \\ (30*45)\text{cm} \end{array} $	4T16mm As=804mm ² Φ ₁ 6mm 120mmc	4T16mm As=804mm ² Φ ₁ 6mm 120mmc
	3 rd & 4 th & 5 th (40*25)cm	$\begin{array}{c} 4T16mm\\ As=804mm^{2}\\ \Phi_{1}6mm\ 120mmc \end{array}$	4T16mm As=804mm ² Φ ₁ 6mm 120mmc
C3	Short col&Gr 1^{st} & 2^{nd} (40*25)cm	$\begin{array}{c} 4T16mm\\ As=804mm^{2}\\ \Phi_{l}6mm\ 100mmc \end{array}$	$\begin{array}{c} 4T16mm\\ As=804mm^{2}\\ \Phi_{l}6mm \ 100mmc \end{array}$
	3 rd & 4 th (40*20)cm	4T16mm As=804mm ² Φ _l 6mm 100mmc	4T16mm As=804mm ² Φ _l 6mm 100mmc

Table 3-12: Beam design at X direction:

At mid span positive

section	ETABS		ROBOT		
	mom	design	mom	design	
B(20*40)cm	+19.3	2 Φ16 As=402mm2	27	2 Φ16 As=402mm2	
B(20*50)cm	+14	2 Φ16 As=402mm2	+11	2 Φ16 As=402mm2	

At interior support negative

section	ETABS		ROBOT		
	mom	design	mom	design	
B2(20*40)cm	-7.8	2 Φ16 As=402mm2	3	2 Φ16 As=402mm2	
B1(20*50)cm	-22	2 Φ16 As=402mm2	-14	2 Φ 16 As=402mm2	

Maximum shear (concrete and stirrups):

section	ETABS		ROBOT		
	shear Dist of stirrups			Dist of stirrups	
B2(20*40)cm	-32	Φ6@160mm c/c	-29	Φ 6@160mm c/c	
B1(20*50)cm	-33	Φ 6@160mm c/c	-38.8	Φ 6@160mm c/c	

At support:

section	ETABS		ROBOT	
	mom	design	mom	design
B1(20*50)cm	-23	2 Φ16	-12	2 Φ16
		As=402mm2		As=402mm2

 Table 3-13: Beam design at Y direction:

At mid span positive:

section	ETABS		ROBOT		
	mom	design	mom	design	
B1(20*50)cm	+29	2 Φ16 As=402mm2	+39	2 Φ16 As=402mm2	

At interior support negative

section	ETABS		ROBOT	
	mom	design	mom	design
B1(20*50)cm	-27	2 Φ16	-30	2 Φ 16
		As=402mm2		As=402mm2

At support:

section	ETABS		ROBOT	
	mom	design	mom	design
B1(20*50)cm	-38.3 2 Φ16		-27	2 Φ16
		As=402mm2		As=402mm2

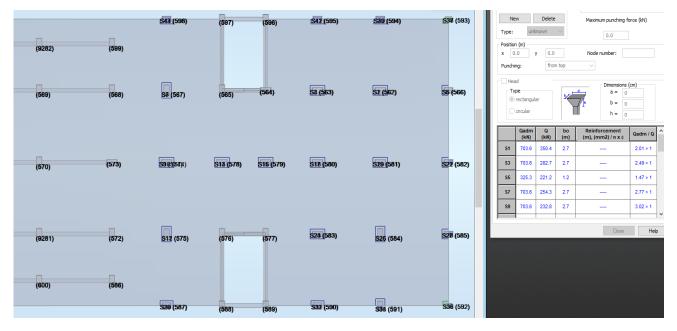
Maximum shear (concrete and stirrups):

section	ETABS		ROBOT	
	mom design		mom	design
B1(20*50)cm	-52	U		Φ 6@160mm c/c

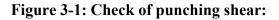
SLAB DESIGN:

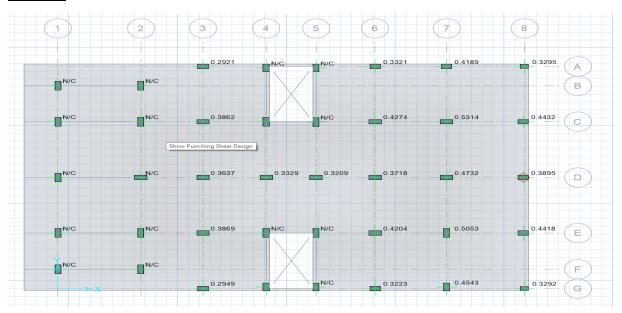
Fy=420N/mm2 fc'=20N/mm2 h=250mm

Table 3-14: Positive moment


Bottom:

member	ETABS &	SAFE	ROBOT	
	Moment	design	Moment	design
Roof slab(Y)	7	Φ6@200mmc/c	6	5Φ6
Floor slab(X)	26	Φ10mm@150m mc/c	22	6Φ10
Floor slab(Y)	29.8	Φ10mm@150m mc/c	20	6Φ10


Table 3-15: Negative moment top


member	SAFE		ROBOT	
	Moment	design	Moment	design
Roof slab(Y)	20.4	Middle strip Φ 6@250mmc/c Col strip Φ 6@100mmc/c	27	Middle strip Φ 6@200mmc/c Col strip Φ 6@100mmc/c
Floor slab(X)	75	Middle strip Φ 16@400mmc/c Col strip Φ 16@100mmc/c	111	Middle strip 3Φ16 Col strip 6Φ 16
Floor slab(Y)	103	Middle strip Φ 16@400mmc/c Col strip Φ 16@100mmc/c	86	Middle strip 3Ф16 Col strip 6Ф 16

<u>ROBOT</u>

• For economy slab I must minimize the thickness of slab to 22cm

ETABS:

Figure 3-14: Check of punching shear:

<u>Stair Design</u>:

L.L=4.79KN/m2 D.L=3.7KN/m2

Fy=420N/mm2

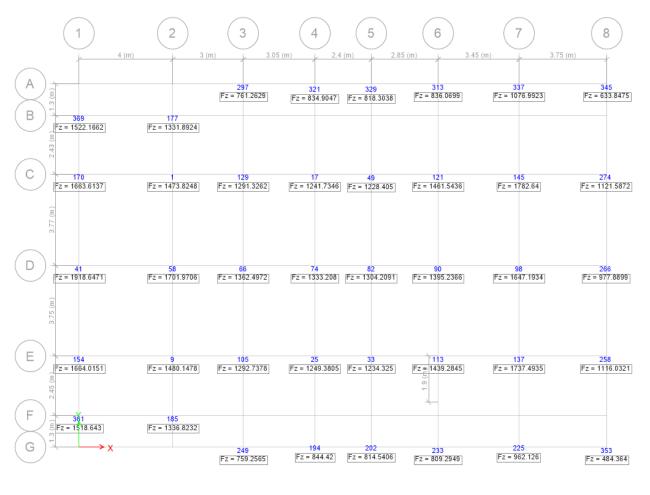
h=0.18m

 Table 3-16: stair design

ETABS			ROBOT					
Mx	bottom	Тор	Mx	bottom	Тор	Mx	bottom	Тор
-18	4Φ 10	4Φ 10 at support	-16	4Φ 10	4Φ 10 at support	-10.4	4Φ 10	4Φ 10 at support

Design of footings:

Fy=280N/mm2 Ø=16mm p=200KN/m2 fc'=25N/mm2 K=120*q


Q=γh =20*1.4=28KN/m2

K=120*(200-28)=20640KN/m2

K=20.60MPa

1)		.0 FZ=839.5 FZ=772.7		
)	FZ=714.2 FZ=848	.0 FZ=839.5 FZ=772.7	FZ=850.7	FZ=395.2
FZ=1395.4 FZ=1294.7				
FZ=1581.9 FZ=1451.5	FZ=1343.3 FZ=160	0.0 Z=1508.0 FZ=1479.6	FZ=1642.8	FZ=888.7
FZ=1858.1 FZ=1703.2	FZ=1373.3 FZ=136	0. FZ=1327.4 FZ=1398.3	FZ=1626.7	FZ=860.1
FZ=1615.9 FZ=1454.6	E7=1331 / E7=157	6. FZ=1577.9 FZ=1489.8	FZ=1659.4	FZ=893.2
			12-1000.4	- 12-033.2
		$(1,1,2,\ldots,n_{n-1},n_{$		
FZ=1409.6 FZ=1306.4				
	FZ=725.1 FZ=859	.8 FZ=816.0 FZ=773.3	FZ=866.6	FZ=404.4
All a china chi	The second Provide the second			

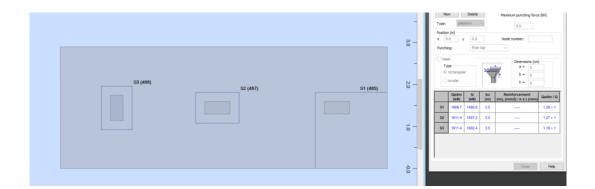
Figure 3-15: Ultimate load in footings in robot

A ctivata Mind

Figure 3-16: Ultimate load in footing in ETABS

ROBC	DT								
Туре	L	В	Н	bottom		top			
				X direction	Y direction	X direction	Y direction		
F1	1.5	1.5	0.5	7Ø16@250mm	7Ø16@250mm				
F2	5.5	2.7	0.6	20Ø16@100mm	34Ø16@150m m				
F3	2.2	2.2	0.5	10Ø16@200mm	10Ø16@200m m				
F4	3.7	1.9	0.5	20Ø16@100mm	24Ø16@150m m				
F5	3.1	3.1	0.5	33Ø16@90mm	25Ø16@120m m				
F6	2.7	6	0.7	20Ø16@130mm	39Ø16@150m m	17Ø16@300 mm	14Ø16@200mm		
F7	5.7	2.9	0.7	38Ø16@150mm	22Ø16@130m m	`			
F8	2.7	1.6	0.5	13Ø16@200mm	10Ø16@160m m				
F9	5.5	2.8	0.6	26Ø16@100mm	34Ø16@160m m				
F10	7.8	2.9	0.5	Ø16@100mm	Ø16@100mm	Ø16@220mm	Ø16@220mm		
F11	7.4	2.7	0.5	Ø16@100mm	Ø16@100mm	Ø16@220mm	Ø16@220mm		
F12	8	2.8	0.5	Ø16@100mm	Ø16@100mm	Ø16@220mm	Ø16@220mm		

Table 3-17: design of footings with ROBOT program



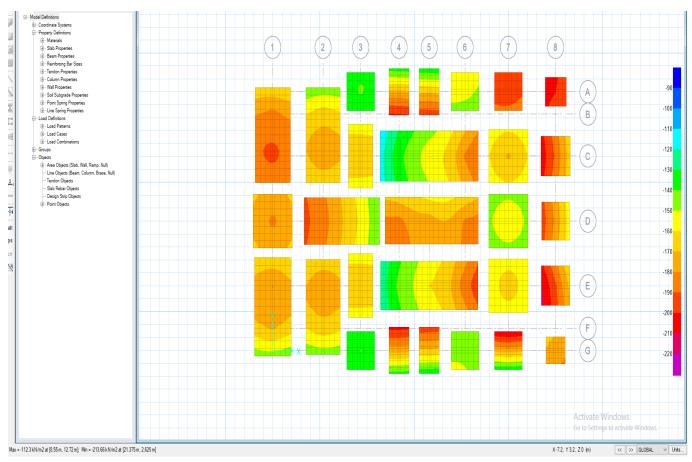

Figure 3-17: Check of punching shear for F10

Figure 3-18: Check of punching shear for F11

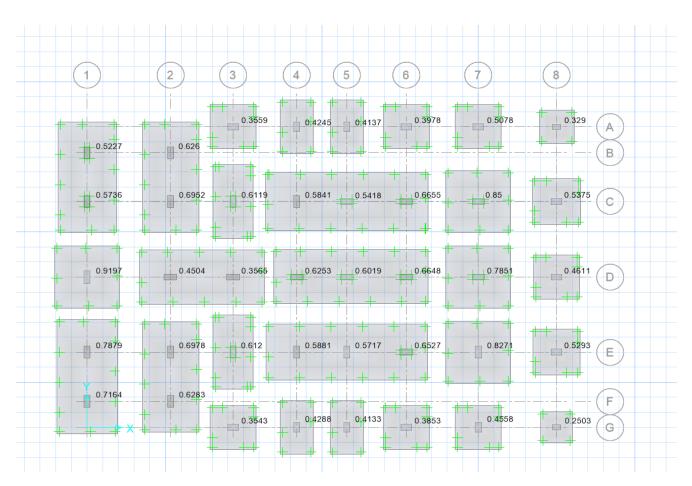
				- 5	ł		rectangula dircular	r	1	Dimensions (cm a = 0 b = 0 h = 0	
	S1 (508)	S2 (510)	S3 (512)	2.0			Gadm (kN)	Q (kN)	bo (m)	Reinforcement (m), (mm2) / n x ¢ (mm)	Qadm / Q
				-		- 51	1911.4	1575.2	3.5		1.21 > 1
						52	1911.4	1580.4	3.5		1.21 > 1
				1.0		\$3	1829.2	1490.0	3.4	-	1.23 > 1
				-	ł						
_				0.0						Close	Help

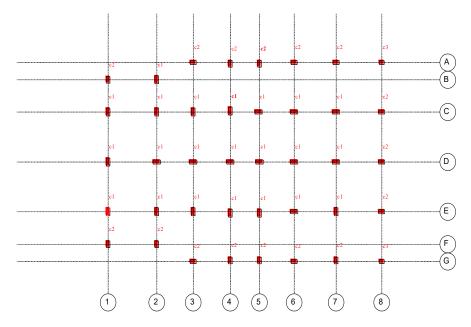
Figure 3-19: Check of punching shear for F12

CHEACK WITH SAFE PROGRAM:

Figure 3-20: Check of soil pressure:

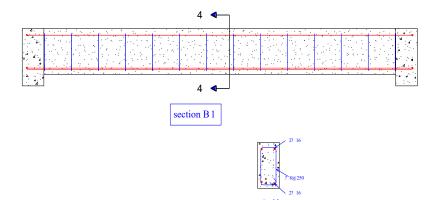
• F(A-8), F(C-8)& F(E-8) I have increase their dimensions because the soil pressure was not exceeded.




Figure 3-21: Check of punching shear

SAFE								
Туре	L	В	Н	bottom		top		
				X direction	lirection Y direction		Y direction	
F1	1.5	1.5	0.5	Ø16@250mm	Ø16@250mm			
F2	5.5	2.7	0.6	Ø16@120mm	34Ø16@150mm			
F3	2.2	2.2	0.5	Ø16@150mm	Ø16@150mm			
F4	3.7	1.9	0.5	Ø16@100mm	Ø16@150mm			
F5	3.1	3.1	0.5	Ø16@90mm	Ø16@80mm			
F6	2.7	6	0.7	Ø16@130mm	Ø16@150mm			
F7	5.7	2.9	0.7	Ø16@150mm	Ø16@130mm	1		
F8	2.7	1.6	0.5	Ø16@200mm	Ø16@150mm			
F9	5.5	2.8	0.6	Ø16@100mm	Ø16@100mm			
F10	7.8	2.9	0.5	Ø16@120mm	Ø16@100mm	Ø16@250mm	Ø16@250mm	
F11	7.4	2.7	0.5	Ø16@100mm	Ø16@100mm	Ø16@250mm	Ø16@250mm	
F12	8	2.8	0.5	Ø16@100mm	Ø16@100mm	Ø16@250mm	Ø16@250mm	

Table 3-18: design of footings with SAFE program


Published by : http://www.ijert.org

Details:

	دردب			
2	و د غذی اور حس	د طلبون الاون و د د در ن	232.3 27779 -	.₩
<u>ci</u>	18 8	100	10 0	100
<u>C2</u>	1 8 -0 3	10 0	0.20 1 0 0	10 20
	0.25	0.20	0.20	and a strength
<u>C2</u>	5 1 0 0	10 0	3 1 0 0	

Figure 3-22 columns

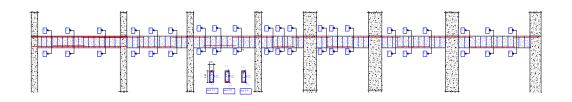
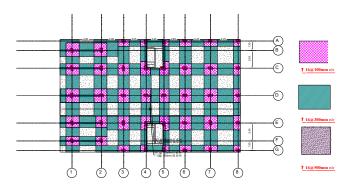



Figure 3-23: Beams

Тор

bottom

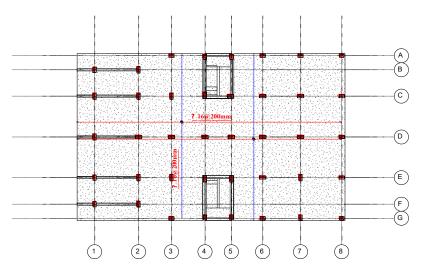


Figure 3-24: Slab details

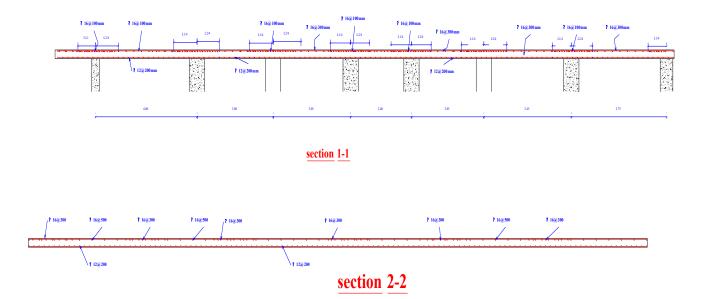


Figure 3-25: section of slab

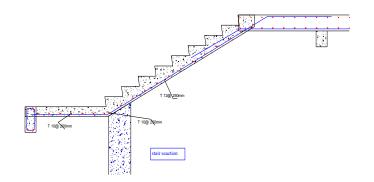


Figure 3-26: stairs

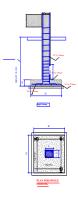


Figure 3-27: Isolate footing:

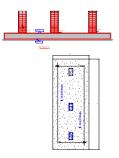


Figure 3-28: Continues footing:

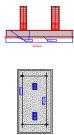


Figure 3-29: Combined footing:



Figure 3-30: raft foundation

4. CONCLUSIONS:

I- After analyzing the G+5 story building structure, concluded that structure is safe in loading like dead load, live load and wind load.

II- Member dimensions (Beam, Column and Slab) are assigns by calculating the load type and its quantity applied on it. AutoCAD plan gives detailed information of the structure member's length, height, size and numbers etc.

III- ETABS & ROBOT has the capability to calculate the reinforcement needed for any concrete section. SAFE program used to check the foundation design. The program contains a number of parameters which are designed as per.

IV- The next paper the analysis will be done using deformed shape by using software programs.

V- The ETABS program extracts high values, while the robot extracts low values. In my personal opinion, the robot produces more accurate values. The program uses the Finite method and works on analyzing all the elements, even the foundations, while ETABS designs most of the elements, and the design of the foundation and slab is verified using the SAFE program.

VI- The difference in torque values is somewhat large, especially in beams, but as for the design, the design is almost uniform.

5. REFERENCES:

1. British standard BS8110: Part 1:1997 "Code of practice for design and construction. "British Standard Institution: London.

2. D Polette and J MLanders, 1997"Construction Systems", London, Goodheart-Wilcox Co.

3. T.J.MancGinley and B.S.Choo, 1990 "Reinforced Concrete Design Theory and Examples,"2nd edition, London, SPON Publishers.

4. Eugene JO and Andrew SD, 1999 "Reinforced and Prestressed Concrete Design the Complete Process, "2Tld edition, London Longman Publishers.

5, Moseley WH and Bungy JH, 1999 "Reinforced Concrete Design," 5th edition, London, Macmillan Publishers.

6. Building Code Requirements for structural Concrete (ACI318-08) and Commentary (ACI 318-14), American Concrete Institute, P.O. Box 9094, Farmington Hills, Michigan.

7. Arthur H. Nilson, David Darwin, Charls W. Dolan, "Design of concrete structures", 13th edition.

8. Arthur H. Nilson, George Winter, Design of concrete structures", 10th edition.

9. D. Fanella, I. Alsamsam, "The Design of Concrete Floor Systems", PCA Professional Development Series, 2005.

10. McGregor, J.G. "Reinforced Concrete Mechanics and Design", Prentice Hal, New Jersey, 1997.